Abenomics – A Further Update

This discussion of Abenomics is the third in a continuing series monitoring the progress of the most dramatic economic reform undertaken in Japan in over 20 years. Unfortunately that is not saying much, as the economy has been essentially moribund since late 1990 when recession hit as it did around the world. The major difference between Japan and the rest of the world is that the rest of the world dealt with their recession and moved on and Japan didn’t. Shinzo Abe, upon his election in 2012, sought to address this lack of action with the introduction of “Abenomics”, the economic policy platform involving three “arrows”, namely:

1. loose monetary policy;
2. loose fiscal policy; and
3. structural reforms.

As keen readers of this series would remember, the first two arrows are relatively easy; the third arrow is almost impossible difficult in a country which has stubbornly resisted reform for over 20 years and a bureaucratic system and culture which works against any form of radical change. I said in the last article on this subject, published in the Summer 2014 edition, that the loose fiscal policy, or second arrow, was “starting to break up in the air” and that the third arrow “never really took flight”.

About one year on and nothing has changed. In fact, perhaps things have got worse, which is why Mr Abe sought an early election last November, ostensibly to “give him time to finish the job” [implementation of the “three arrow” economic policy platform].

The reason why things have arguably worsened is that the first two arrows on their own will invariably weaken the yen against other countries. Without productivity boosting economic reform, this is a disaster. Japan largely imports the inputs it needs to provide most goods and services, so without improvements in operating margins through productivity gains, economic activity actually reduces rather than increases and the risk of deflation actually worsens after any short-term stimulation the first two arrows may have provided dissipates.

Japan’s net debt is close to 140% of Gross Domestic Product, or on a par with Greece. It currently takes about 16% of tax revenues to pay that debt at an interest rate of 0.5%.

So, if Japan doesn’t prosecute economic reform and as a result the country gets razing inflation due to a rapidly depreciated currency, without very rapid tax increases (which look as unlikely to happen as
up the assets of others. It would redistribute wealth from old to the
young. And after a default, Japan would still have all the
same factories, all the same land, all the same people with all the
same education. There would be plenty of short-term pain, fear
disruptions to the international financial system, but at the end of
the day, Japan would still be standing.”

So, how bad is a sovereign default anyway?

Two PhD candidates at Harvard University, Benjamin Hebert and Jesse Schreger, recently conducted a study into the effect of the Argentine sovereign debt default of 2001 and found that such a default gave rise to a significant cost borne by domestic business.

Professor Ugo Panizza and Mr Eduardo Borenstein, in a paper published in 2009, looked at four possible costs of sovereign default:

1. loss of reputation;
2. reductions in trade;
3. costs to the domestic economy; and
4. political costs.

Using Inter-American Development Bank data, which provides a detailed description of default episodes over the least two hundred years, they found that, essentially, all was forgiven within about five years.

However, typically, these defaults involve small, statistically insignificant developing countries, not high income, large economies. One would think that the collapse of the third largest economy in the world would have ramifications for all other high income economies at least of such dimensions that it would usher in an economic shock at least as great as the Global Financial Crisis, which arguably has had global adverse economic effects which have extended beyond five years.

Whatever the actual outcome, Australia needs to seriously consider what effect a collapse in the Japanese economy would have on Australia, given the position of Australia as one of Japan’s key trading partners. I note that the present Federal Government may well plan to make Japan one of Australia’s key defence partners, supposedly meaning that the collapse of Japan would then have much more than just an economic effect on Australia.

My comments at the close of my previous article on this subject seem even more appropriate now:

“One hopes that the digital cold war that the two superpowers seem to want to start can quickly die down and that they can both get back to improving their respective economies without thinking that they have to do so at the expense of the other. Our own government’s opportunity to promote economic relations in Asia without the distraction of Middle East last war involvement which has constrained prime ministers in this country for the last 15 years or so is one that needs to be grasped with both hands.”

I believe that the above comments now mean that Australia must do more than just enter into a free trade agreement with Japan, as useful as that is for both countries. Australia needs to seek a prominent role in the ASEAN forum, and progress with the ASEAN-Australia-New Zealand Free Trade Agreement (the First Protocol of which was signed as recently as 26 August 2014).

Similar initiatives should be strongly encouraged.

Dymond, Foulds & Vaughan offer this facility whilst Foulds & Vaughan provides this facility.
FROM THE EDITOR

I am delighted to finally bring you another edition of the News. Despite this being a record breaking bumper edition, we have actually deferred some content (!) and so look forward to bringing you another edition of the news sooner rather than later.

2014 was a year of much activity and achievement and our renowned Vice President David de Rozenker-Apted recounts it fondly at page 3 and also previews some exciting events to look forward to, not least among them the October long weekend in Albury and the World Congress in Shanghai in November.

Our esteemed President Roy Lummy has provided us with an authoritative account of modernist churches in Australia, starting at page 4.

It is great to receive external contributions to this newsletter and we are privileged to have received a very considered piece by Colleen O’Sullivan, acknowledged expert on Kandos, a unique company town which has survived and prospered beyond the life of the founding company yet retained many features of the initial company imprint and as Colleen says at page 12, is a “private village, 20th century town”.

The inimitable Matt Stone returns with his amazing series centuary town”.

A suburban church – Modernism and Christian houses of Worship Roy Lummy

Private village, 20th Century town – Kandos, NSW Colleen O’Sullivan

Against the grain – de Havilland’s advanced wooden aircraft of the 1930s Matt Knowe

Book Reviews Roy Lummy

Palace of Catalan Music, Barcelona Larisa Sarkadi

Society Information 27

Cover: Santa Sabina College, Strathfield (1960). photo: John Lumby

FROM THE VICE-PRESIDENT

Albeit belatedly, we do trust that 2015 will be a successful and safe year for you and those you hold dear. We are pleased to look back on a successful year and for that outcome we have you our dedicated Members, Friends & Associates, the hard working Management Committee and members of our working groups to thank.

We were fortunate to once again have welcomed Guests to present at our 2014 events. Dr Judith O’Callaghan, Director, Postgraduate Research, Faculty of Built Environment, UNSW, Sydney presented at our AGM in August with an illustrated talk entitled Ultra-Modern which traced the origins and transformation of the modern motel in New South Wales over the period 1945 to 1970.

In September, David Burton B Des (Arch) M Arch (Hons) led our walk in Millers Point to raise awareness for the community there in the light of recent state government decisions regarding the Department of Housing Tenants. In November Trevor Howells, now retired Senior Lecturer & Director of the Graduate Heritage Conservation Programme, in the Faculty of Architecture, Design & Planning at the University of Sydney

The Society’s annual October Long Weekend visit to a regional centre was in Bathurst and supported by 17 Members and joined by local Historians and Residents making it most enjoyable and successful, fulfilling our aims and objectives to raise awareness of our dwindling stocks of heritage and heritage sensitive items in the state of New South Wales and beyond.

Something to say – something to contribute?

We hope that you have enjoyed the contents of our flagship publication, The News, which will continue to provide quality articles and items of interest. However, we really would like you to seriously consider offering up contributions to the newsletter.

On the inside back cover, we have set out our policy for inclusion, and ask you to consider a contribution – or approach someone you know who may bring interesting issues to the attention of the Society, Friends and Associates.

The President and I wish to acknowledge a number of people who contributed to the weekend:

Dr Alan Matthews for historical research, compilation of background information & photography. Stuart Read for heritage landscape input during the walks. Lyn Scaysbrook for accommodation, food & tourism information. The Very Reverend Anne Wentzel, Dean of All Saints Cathedral, and Ms Lalage Gabb and Barbara Fallow, Guides, for welcoming the Society to the Cathedral. Graham Lupp, John Payne and Sandy Bathgate for local historical and architectural input. Jessica Boyle, Senior Heritage Planner, Bathurst Regional Council for assisting with the visit. Alan McRae, President of Bathurst District Historical Society for promotional activity. Peter Scott, Manager, Campus Services, Charles Sturt University for Campus access. Last but by no means least I would like to acknowledge our President Roy Lummy for historical research, composing the text for the illustrated booklets for conducting the walks.

We are working hard to continue an exciting programme of Walks & Talks during 2015, which will include our next October Long Weekend in Albury, and the World Congress on Art Deco, Shanghai in early November as part of the International Art Deco Societies’ annual festivities. More of this will be advised at our earliest.

I would like to close with sincere thanks for your continued support for our Aims & Objectives, especially those who have renewed their Membership for the 2015/16 Membership Year.

David de Rozenker-Apted
On 18 December 1924 in the township of Murrumburrah, the twin town to Harden, Leo and Mary Curtin became the proud parents of twin boys, Kevin Joseph and Leo Patrick. The family moved to the Canberra suburb of Ainslie. The boys went to St Gregory’s School in Queanbeyan and Kevin found work, when he was old enough, as a messenger for a local architect. Both brothers enlisted on 30 January 1943 and joined the Air Force. They trained together as air observers, flying with the 103 Squadron RAAF. Pat Curtin died in an air crash while on a bombing mission in February 1945. Kevin survived the war with a record of 170 operational hours of flying, five daytime raids and 25 night raids over Europe. He was discharged at the beginning of July 1947.

In April 1949 Kevin Curtin married Judith Rolfe at St Gregory’s. He registered as an architect on 25 June 1951, although it has been suggested that he only followed this path because his brother had been keen to become an architect once the war ended, while Kevin had been advised to become a boilermaker! After working for a government department, in 1953 he established his own practice in Sydney. Amongst his earliest commissions was St Bernard’s Catholic Church in Ramsgate Street, Botany, according to Kevin Curtin designed in 1953.

The congregation associated with St Bernard’s was already well-established. The foundation stone of what was called Mount St Bernard’s church, located on a hill overlooking Botany Road in North Botany, was laid on 11 September 1860 and the completed building is understood to have been blessed on 29 December 1861 by Archbishop Polding. The parish of Botany Bay was formed in 1885. After the local council changed its name from North Botany to Mascot at the end of 1911, the parish was renamed St Bernard’s Mascot as well. St Therese’s Church in Mascot was constructed in 1940 to the design of Clement Glancy. Its Romanesque appearance, executed in face brickwork, is characteristic of many Catholic churches designed in the 1930s.

The parish was split into two in 1954, and the parishes of St. Therese’s Mascot and St. Bernard’s Botany were formed. The early Mount St Bernard’s buildings were subsequently acquired and then demolished by the Department of Civil Aviation as Kingsford Smith airport expanded, so a new church was required by St Bernard’s parish. A site was acquired in Ramsgate Street, Botany, which was occupied by three cottages. In the absence of readily available evidence, it is interesting to speculate why the parishioners of St Bernard’s decided to engage Kevin Curtin. He would have been keen to build up a wide client base and establish a favourable reputation, especially having a recently formed practice. It is also quite possible that he was acquainted with the hierarchy or parishioners of St Bernard’s, or the parish priest, Reverend Father T Everard. The cost of acquiring land for the new church may have limited the budget available to the parish, so it would have been advantageous for the architect to provide it with a cost-effective and architecturally accomplished church that would also stir up interest in the wider community. Which is what Kevin Curtin did and perhaps a bit more as well, ably assisted by structural engineer Crooks Michell & Peacock and building contractor J Zemancheff.

The Sydney Morning Herald claimed St Bernard’s was the first church in Australia “of parabolic design.” St Bernard’s structure consists of a frame of nine parabolic precast concrete ribs, prefabricated away from the site, that rise to an apex of 9.75m above the ground. The ribs are tied together with concealed horizontal tensioned cables, known as Freyssinet cables, at the apexes of the curved ribs and at the level of windows on each side of the building. The cables are named after French pioneer in pre-stressed concrete Eugene Freyssinet (1879-1962), who was an important figure...
in the development of pre-stressed concrete. Pre-stressed concrete works through the introduction of compressive forces via steel cables into concrete to counteract forces that result from loading the concrete. In the case of St Bernard’s, the cables were stretched and anchored in place after the concrete ribs were installed, thus compressing the structure. The process is known as post-tensioning. Although Freyssinet didn’t invent pre-stressing technology, he recognised the important benefits that high-strength pre-stressed cables contributed to concrete construction, and developed associated technologies that allowed them to be used for many types of structures. Freyssinet’s influence can also be seen in a major Sydney landmark, the Gladesville Bridge, as he reviewed and contributed to the design developed by structural engineers G Maunsell & Partners.

The space between the parabolic ribs was spanned by horizontal pre-cast concrete beams with marble chips embedded into the matrix, covered by asbestos felt with a light mesh over it onto which 38 millimetres of concrete was poured. Copper sheeting placed over the ribs was intended to protect them from the elements. This shell of concrete enclosed a wide nave that could accommodate 475 worshippers, with the sacristy, confessional and grotto along one side, and the altar at the southern end of the building, while a reinforced concrete gallery was located above the main entrance to the church over the doors.

According to Kevin Curtin, pre-cast concrete provided a number of benefits to building construction - quality control was improved because of better conditions for inspecting and supervising fabrication; construction time could be reduced; money was saved because formwork could be used many times and closer tolerances were possible. Curtin believed that if a conventional structural system had been designed and used, St Bernard’s would have taken about twice as long to build. He anticipated that the enclosing shell of the church would be constructed in less than four working weeks, thus proving the speed and economy of the structural system.

The completed church was blessed and opened by Cardinal Norman Gilroy on 3 April 1955. Was the congregation pleased with what they had commissioned? According to Architecture in Australia they were. The journal laconically noted the congregation was “contented”. St Bernard’s also helped establish Kevin Curtin’s reputation:

“One of the most interesting young architects of the post-war period is Kevin J Curtin, who has broken away from the traditional forms of church architecture to offer in modern materials those things which he thinks should be in a church suited to the site, the age, and the people of today. Not all will agree with his ideas, but there are few who will not admire his courage.”

Contemporary observers noted that there were a number of parabolic Catholic churches in Europe and America but they were quite rare in Australia. A couple of Australia’s parabolic churches have achieved a level of fame, although they were constructed some years after St Bernard’s. One is architect Eddie Oribin’s St Paul’s Anglican Church in Proserpine, Queensland (1959), which is considered to be of state heritage significance. Here laminated timber arches rather than pre-cast concrete have achieved dramatic spatial effect. Another is architect Ian Ferrier’s St Mary’s Star of the Sea Cathedral in Darwin, which was opened and blessed in August 1962 and is no less stunning than St Paul’s.

Perhaps the most extraordinary of all was the amazing cathedral and monastery intended for the Benedictine community at New Norcia, 132 kilometres north of Perth, which was commissioned in 1957 and designed by famed Italian architect and engineer Pier Luigi Nervi.
structural engineer, Pier Luigi Nervi. Regrettfully the cathedral was never built.

St Bernard’s reflects the influence of a powerful architectural trend that emerged during the 1920s. The Church of Notre Dame du Raincy near Paris, designed by influential architect Auguste Perret and completed in 1923, is considered a seminal moment in church design because of its concrete construction, which allowed him to dispense with references to the churches of the past. Light became an important part of the architecture and of the liturgy. Böhm was interested in addressing the part of the liturgy in services, and considered the participation of a community in worship an important design consideration. Thus the altar occupied a central place in the planning of his churches.

The austere exterior of Böhm’s 1927 St Apollinaris in Freilingsdorf, to the west of Cologne, conceals its structure, which consists of a series of parabolic concrete trusses that are, however, fully exposed inside the building. The nave of the church is long and rectilinear. However, his slightly later St Engelbert in Cologne (1932) radically placed the congregation in a circular nave and enclosed them with parabolic vaults. Böhm’s planning became simpler as the 1930s progressed, culminating in a square-planned church where the congregation sat in a U-shaped configuration around the altar.

St Bernard’s also recalls the prevalence of vaulted concrete structures being erected in Latin America from the late 1930s through to the 1950s - “parabolic arches would soon become a kind of trademark throughout central and southern Latin America.” One of Brazil’s foremost twentieth century architects, Oscar Niemeyer, exploited the malleable potential of concrete in a creative and individual way - “unafraid of the curved line ... Niemeyer has used it with an instinctive lyrical touch and an uninhibited spontaneity throughout his career ...”. However, perhaps none of the Latin American architects was more inventive, rational and audacious than architect Felix Candela (1910-1997), who was born in Madrid and in 1941 moved to Mexico where he taught himself civil engineering. Candela moved to America in 1971 after designing some 896 buildings and structures. He may well have been influenced by the great Spanish architect Eduardo Torroja, who exploited reinforced and pre-stressed concrete in a romantic, innovative and imaginative manner, favouring undulating and folded shapes to spectacular effect. Candela was responsible for the design of complex, thin, reinforced concrete membranes based on a profound knowledge of geometry allied to a deep understanding of the structural possibilities resulting from this knowledge. He produced extremely thin concrete shells combining great aesthetic effect, structural efficiency and low construction costs.

St Bernard’s enclosed a relatively traditional plan within an innovative structure, but Kevin Curtin was well aware of other approaches to planning, which anticipated wider changes that were to take place in the architecture of churches in the near future. Two commissions undertaken around the same time as St Bernard’s, both located in Flemington parish, were in their own ways just as groundbreaking. The Church of the Assumption of the Blessed Virgin Mary in Underwood Road, Homebush was opened and blessed on 29 January 1956. The second commission, St Dominic’s in The Crescent, Homebush West, was opened and blessed on 29 January 1956. The close collaboration between St Dominic’s pastor Kerr and Curtin resulted in an unusual fan-plan generated by the conditions of the site, which resulted in a nave about twice as wide as a more conventional church. This meant that more of the congregation could be closer to the altar. A steel trussed roof was supported without any internal columns interrupting the nave. The spacious
The planning of St Dominic’s anticipates changes that followed in the wake of the so-called Liturgical Movement, which originated in the early 1830s in France. Benedictine monks at the Abbey of Solesmes, to the southwest of Paris, studied early Christian forms of worship. Their endeavours led to calls for greater active public participation in worship, supported by a number of Papal decrees during the twentieth century. The Protestant church was also influenced by the Liturgical Movement and from the second half of the 1950s onwards the planning of churches of several denominations evolved to accommodate changes to liturgical procedures. Planning reforms were accompanied in many cases by adventurous Modernist-inspired architectural forms and the dramatic manipulation of light entering churches.

The planning of St Dominic’s anticipates changes that followed in the wake of the so-called Liturgical Movement, which originated in the early 1830s in France. Benedictine monks at the Abbey of Solesmes, to the southwest of Paris, studied early Christian forms of worship. Their endeavours led to calls for greater active public participation in worship, supported by a number of Papal decrees during the twentieth century. The Protestant church was also influenced by the Liturgical Movement and from the second half of the 1950s onwards the planning of churches of several denominations evolved to accommodate changes to liturgical procedures. Planning reforms were accompanied in many cases by adventurous Modernist-inspired architectural forms and the dramatic manipulation of light entering churches.

The Catholic Weekly explained in simple and direct terms the impact of these reforms when it reviewed Kevin Curtin’s St Nicholas of Myra Church at Penrith in February 1967:

The new St Nicholas of Myra Church at Penrith has been designed as an attempt to satisfy the difficult and apparently hard to understand “Reform to the Liturgy.”

Father John Grady, the parish priest, gave the opportunity to the architects to interpret, in simple form, the changes set by the theologians.

At Penrith, within the limit of man’s understanding, the limits of bricks and mortar, and also of finance, stands a circular church with the communal altar placed in the centre of the congregation.

Why? Because that is where the table of sacrifice and communal meal should be, so positioned that there is no other priority than that of the host—the priest, as Christ’s represent-

sanctuary was flanked on either side by simply designed altars, focussing attention on the main altar, the location of which was further emphasised by a sloping floor and ceiling. It was suggested that St Dominic’s was the first church in Sydney planned to bring a congregation closer to the altar. St St Bernard’s, the Church of the Assumption of the Blessed Virgin Mary, St Dominic’s and St Nicholas of Myra were just four of over 50 churches and chapels designed in Kevin Curtin’s office over four or more decades, the majority of which were for the Catholic Church. There were also more than 200 school buildings for the Church, and because of all these buildings Curtin was awarded a Papal Medal. There were many other commissions as well—hotels for the Federal Hotels chain, major suburban and regional civic centres, airport facilities and office buildings. A branch office was established in Canberra to look after commissions there. The practice became known as Curtin Bathgate & Somers in 1991. The final commission credited to Kevin Curtin before retiring was the St Mary’s Cathedral School, Cardinal and Priests’ residence in Sydney, built around 1985-86. He enjoyed several years of retirement before his death on 13 April 1996 at the age of 71. His churches remain an outstanding legacy of architectural achievement and a significant part of NSW’s twentieth century architectural heritage.

My thanks to Dr Noni Boyd for her assistance with historical material.

SOURCES:


K J Curtin, “Building with Precast Concrete Units”, Constructional Review, August 1961

Enrique Harwood, “Liturgy and Architecture: the development of the centralised eucharistic space”, in The Twentieth Century Church, The Twentieth Century Society, 1988, pp.49-74


“Churches or ?”, Architecture in Australia, October-December 1955.


“Unique Feature in Modern Church Aids Piety”, Catholic Weekly, 16 December 1954.

“Church Design of the Firm of Kevin J Curtin”, Mary, October 1959.


Private village 20th Century town

Communities, like people, seek an identity; seek to understand those qualities that make them unique and set them apart from others. To understand themselves they need to ask the big questions: Who are we? How did we evolve? What is our vision? What is our future? Communities, like individuals, often find answers in their history.

A part of Kandos’ uniqueness is its beginning as a private village. “What’s that?” I hear you ask. According to the Geographical Names Board, a private village is one established and run by a private company. There are a number of towns in NSW that lay claim to their beginnings as private villages, including Booral, Tamworth and Berry. That is not surprising, given that the first commercial premises in country NSW – inns and hotels, blacksmiths and bakers, general and produce stores – often began on private land. These serviced the land-holder, his family and workers, cooks, travellers and road builders. Some developed into villages and were officially gazetted and then grew into towns. Kandos had a different beginning as a private village. It didn’t grow along the wayside; it was planted. It was envisioned and planned. A group of entrepreneurs recognised that natural deposits of limestone, shale and coal near a railway line could produce a cement industry.

Village of Kandos

They floated a company ‘The NSW Cement Lime and Coal Co Ltd’ by a private company. There are a number of towns in NSW that lay claim to their beginnings as private villages, including Booral, Tamworth and Berry. That is not surprising, given that the first commercial premises in country NSW – inns and hotels, blacksmiths and bakers, general and produce stores – often began on private land. These serviced the land-holder, his family and workers, cooks, travellers and road builders. Some developed into villages and were officially gazetted and then grew into towns. Kandos had a different beginning as a private village. It didn’t grow along the wayside; it was planted. It was envisioned and planned. A group of entrepreneurs recognised that natural deposits of limestone, shale and coal near a railway line could produce a cement industry.

The town expands

There seems no doubt that the cement company had always expected that as Kandos grew it would eventually desire an urban area and either come under the management of Ryolstone Shire or establish its own council. It was inevitable as the community spread beyond company boundaries. Local grazier and entrepreneur T H Lloyd subdivided some of his land into town blocks on the western side of the railway line and auctioned it off, and the Crown also sold off residential blocks. Ryolstone Shire Council certainly saw the benefits of increasing its income and influence. Within a year of the first land auction in October 1914, the Mudgee Guardian reported, “The local council intends applying to have Kandos made an urban area”. According to the Geographical Names Board, Kandos was proclaimed an urban area on January 11, 1918. This enabled Rylstone Shire to apply· ing to have Kandos made an urban area”. The new municipality cannot be constituted unless the petition is supported by a majority of the rateable value of the land in the proposed area. The evidence indicates otherwise. On January 15, 1914, the Mudgee Guardian reported: “Candos” was laid on the table by the clerk showing the streets and other details. “A town for ten years, the name has appeared in every newspaper item up to March 11, 1915 when the Mudgee Guardian reported: “You are required to the industrial centre known hitherto as Candos with a K instead of a C.”

Post Office records show that the Secretary of the Post Master General had sent approval for the name Candos instead of Candos on February 26. The town of Kandos is planned deeply in its cement company history and 20th century architecture and our shared understanding of its unique cultural heritage is a source of community pride. The closing of the cement company has meant Kandos has to look towards a different future. Perhaps we can find direction in our history.

Colleen O’Sullivan is an historian, author of Beneath a Moving Ropeway – architectural landmarks of Kandos, 2010; Henbury – the early history of a country golf course, 2006, a Kandos walking tour brochure and 2012’s Once a Day Dawn.
By the early 1930s, there had been major changes in how aircraft were engineered and constructed. Most designers were moving away from the spindly wood, wire and fabric techniques of the biplane era.

The latest airframes were constructed almost entirely of metal, with minimal use of wood or fabric. Metal offered good strength in relation to its weight; could easily be formed into aerodynamic shapes; and was well-suited to emerging mass production techniques.

In Britain, however, the de Havilland Aircraft Company went completely against this trend – and started producing innovative, streamlined aircraft from ‘old fashioned’ wood. Its most successful of these designs was built in Britain, Canada and Australia, and helped change the course of the war.

The de Havilland company was formed in 1920 by Geoffrey de Havilland (b.1882, d.1965), a visionary engineer and airframe designer who also had a flair for marketing and publicity. In 1934, he was presented with an ideal opportunity to show off his company’s design expertise, and potentially open up new markets outside the depressed British economy. This opportunity arose when, as part of the Centenary of Melbourne celebrations, one of Australia’s wealthiest individuals announced an air race from London to Melbourne.

Sir MacPherson ‘Mac’ Robertson (b.1859, d.1945) was famous for his Freddo Frogs, Cherry Ripes and Old Gold chocolates – and was also co-founder of MacRobertson Miller Aviation (MMA), which operated regional passenger and cargo services from the 1920s to the 1960s. Robertson was conscious of Australia’s isolation, and saw a race across the globe as a way of developing air travel’s potential. It would be a test bed for engines and airframes, and an exciting challenge for crew members.

Geoffrey de Havilland decided that a purpose-built craft should be tailored to the long stages of up to 2,500 miles (approx. 4,000 km), across Europe and the Middle East, then south to Australia. He advertised the proposed new craft at a nominal price of £5,000, and received three orders from race competitors.

The company’s chief designer, Arthur Hagg (b.1888, d.1985), was put in charge of the project, with only around 8 months to get an advanced design off the ground. Hagg’s team worked feverishly on a low-wing monoplane with an enclosed cockpit and retractable undercarriage, to be named the DH.88 Comet. The requirement for a high cruising speed – while conserving fuel for maximum endurance – meant effective streamlining was essential. This led the team to design an unusually narrow airframe, with a very small frontal area. Hagg had developed a revolutionary stressed-skin timber construction method, based around newly-developed industrial bonding agents.

Aviation historian David Ogilvy describes the Comet’s fuselage as: ‘shallow box spars joined by a skin comprising two layers of spruce planking, crossing each other at 60 degrees diagonally to the fore-and-aft axis of the aircraft.’ The wings were of an unusually thin, low-drag design of birch ply with spruce structural elements. This monocoque structure was ideal for forming aerodynamic curves without the drag-inducing rivets and seams of a metal airframe, and could be finished to a high degree of

The all-timber DH.88 Comet G-ACSS ‘Grosvenor House’ on display in Martin Place, Sydney, on 12 November 1934. After leading for most of the race, Charles Scott and Tom Campbell Black flew from London to Melbourne in just under 71 hours, fully the very short of the race. PHOTO: SAM HOOD

G-ACSS ‘Grosvenor House’ has been restored to flying condition, and is a star attraction at the Shuttleworth Collection in the UK. Tail number ‘34’ recognises the year of its famous race win. PHOTO: WOLDERE/WIKIPEDIA

Operated by MacRobertson Miller Aviation, ‘Old Gold’ was ideal for publicising ‘Mac’ Robertson’s chocolates. The de Havilland Giant Moth could carry six passengers plus cargo. PHOTO: ROBERTSON COLLECTION

The de Havilland’s advanced designs of the 1930s were constructed from wood.
MacRobertson Miller Aviation’s first aircraft, ‘Old Gold’, could carry six passengers.

Aircraft designers at this time were starting to appreciate the smoothness. Hagg’s approach resembled a method previously used in certain specialised types of boat-building; and indeed boats were his hobby.

The Comet’s unusually slender fuselage meant the two crew members had to be seated one behind the other – and it was a tight squeeze. Flight controls were duplicated for both seats, with only the front position having a full set of instrumentation. In practice, one pilot would be able to relax or take a nap on the long stages, while the other flew the plane.

A streamlined sensation

The Comet was built and tested in great secrecy, and when unveiled in late 1934, the glamorous machine created a sensation among the general public. It was a marvel of modernity and streamlining, with its slender wings and mirror-smooth fuselage. In the preceding weeks, the design team had made only a handful of test flights, but the Comet proved to be a superb performer. In the hands of an experienced aviator, it was generally well-balanced and pleasant to fly. The company’s total development budget had been £50,000 – so the asking price of £5,000 for each Comet is surely one of aviation’s all-time bargains. On paper, certainly a well-balanced and pleasant to fly. The Comet was ready for competitive trim. The Comet Hotel was built near de Havilland’s Hatfield factory in the 1930s, and served to drive the propeller directly, and also positioned regular maintenance items – like spark plugs – down low where ground crew could easily reach them.

Each of the Comet’s engines was fitted with a two-stage variable pitch propeller. Once in flight, the blades’ pitch would automatically adjust to the ideal angle for fuel-efficient high-speed cruising. However, this wasn’t always simultaneous on both propellers – so the pilot needed to be on alert to apply corrective trim.

Hatching of the Albatross

The Albatross was powered by four of the company’s new Gipsy Twelve engines. This was an inverted V12 of around 18 litres displacement, with its cylinder banks at a 60° angle. Developed from the Gipsy Six, it was air-cooled, and closely cowled to channel air over the cylinders. At this time, however, it was not fully developed and suffered from cooling problems and a lack of power.

British manufacturers were barely in the running: the editor of London’s Saturday Review lamented “Britain has won the greatest air race in history, but she has yet to start on an even greater air race: a race in commercial and military supremacy…”

There were three teams flying de Havilland Comets in the race: the husband and wife team of Jim and Amy Mollison (nee Johnson, already a renowned aviator) in Black Magic; Ken Waller and Owen Cathcart-Jones in an unnamed machine; and Charles (C.W.A) Scott and Tom Campbell Black in Grosvenor House.

Overall, the Comet teams did extremely well. Unfortunately, the Mollisons in Black Magic had to turn back from Baghdad after a series of errors. The other two Comets made it all the way through. After leading for most of the way, Scott and Black were the overall race winners in Grosvenor House – arriving in Melbourne a fraction under 71 hours after leaving London.

The Comet was closely followed by KLM’s Uiver, which arrived just a few hours later – after losing its way during the night, then getting bogged in mud upon landing near the town of Albury in NSW. Third was Roscoe Turner’s Boeing 247D; with Waller and Cathcart-Jones in their Comet placing fourth overall (then returning to London with a newsreel of the race finish, thus achieving a round-trip record).

After the race, the Comets were used in other record-breaking events. Five examples were ultimately produced in total, and even went into limited commercial service in France and Portugal as fast mail planes. Another was leased for evaluation by the British military, where it met with a series of mishaps.

The DH.88 Comet is widely regarded as one of aviation’s all-time classics. In recent years Grosvenor House has been restored to full flying condition, and is a star attraction at air shows.

Winning the race

Chocolate maker ‘Mac’ Robertson’s race attracted huge interest from some of the world’s top aviators, who entered in a motley assortment of aircraft ranging from high performance racers to weatherbeaten cargo and ex-military planes. From the start, the biggest threats to a Comet victory were not from specialised racing machines – but from two of the latest American passenger planes.

A gleaming Douglas DC-2 airliner named Uiver (‘Stork’) had been entered by KLM Royal Dutch Airlines; commanded by one of its top pilots, Koene Dirk Parmentier. The other significant threat was from the flamboyant Roscoe Turner, a former stuntman from Mississippi flying a Boeing 247D. Both the Douglas and Boeing were twin-engined, with a large fuel capacity.

Both KLM’s Douglas DC-2 (top) and Roscoe Turner’s Boeing were advanced American designs. 

After the race, KLM placed a large order for the Douglas DC2, which resulted in a public spat with Fokker for switching from home-grown products. But the reality was that Fokker had been persisting with increasingly outdated designs. In America and elsewhere, its passenger planes had dominated key parts of the market, but sales entered a long-term decline.

The Albatross was welcomed for its advanced, streamlined design. 

Arthur Hagg left the company at around this time, and Ronald Bishop (b.1903, d.1989) took over as head of design. The team drew heavily upon Hagg’s ‘boatbuilding’ method, and further refined his approach for application in a much larger craft, which they named the DH.91 Albatross. For its fuselage, they used inner and outer layers of preformed ply with a stabilising balsa wood sandwich in between. As with the Comet, one of the benefits of the wooden skin was its remarkable smoothness, which minimised drag.

The Albatross was powered by four of the company’s new Gipsy Twelve engines. This was an inverted V12 of around 18 litres displacement, with its cylinder banks at a 60° angle. Developed from the Gipsy Six, it was air-cooled, and closely cowled to channel air over the cylinders. At this time, however, it was not fully developed and suffered from cooling problems and a lack of power.

British manufacturers were barely in the running: the editor of London’s Saturday Review lamented “Britain has won the greatest air race in history, but she has yet to start on an even greater air race: a race in commercial and military supremacy…”

There were three teams flying de Havilland Comets in the race: the husband and wife team of Jim and Amy Mollison (nee Johnson, already a renowned aviator) in Black Magic; Ken Waller and Owen Cathcart-Jones in an unnamed machine; and Charles (C.W.A) Scott and Tom Campbell Black in Grosvenor House.

Overall, the Comet teams did extremely well. Unfortunately, the Mollisons in Black Magic had to turn back from Baghdad after a series of errors. The other two Comets made it all the way through. After leading for most of the way, Scott and Black were the overall race winners in Grosvenor House – arriving in Melbourne a fraction under 71 hours after leaving London.

Their Comet was closely followed by KLM’s Uiver, which arrived just a few hours later – after losing its way during the night, then getting bogged in mud upon landing near the town of Albury in NSW. Third was Roscoe Turner’s Boeing 247D; with Waller and Cathcart-Jones in their Comet placing fourth overall (then returning to London with a newsreel of the race finish, thus achieving a round-trip record).

After the race, the Comets were used in other record-breaking events. Five examples were ultimately produced in total, and even went into limited commercial service in France and Portugal as fast mail planes. Another was leased for evaluation by the British military, where it met with a series of mishaps.

The DH.88 Comet is widely regarded as one of aviation’s all-time classics. In recent years Grosvenor House has been restored to full flying condition, and is a star attraction at air shows.

Winning the race

Chocolate maker ‘Mac’ Robertson’s race attracted huge interest from some of the world’s top aviators, who entered in a motley assortment of aircraft ranging from high performance racers to weatherbeaten cargo and ex-military planes. From the start, the biggest threats to a Comet victory were not from specialised racing machines – but from two of the latest American passenger planes.

A gleaming Douglas DC-2 airliner named Uiver (‘Stork’) had been entered by KLM Royal Dutch Airlines; commanded by one of its top pilots, Koene Dirk Parmentier. The other significant threat was from the flamboyant Roscoe Turner, a former stuntman from Mississippi flying a Boeing 247D. Both the Douglas and Boeing were twin-engined, with a large fuel capacity.

There were three teams flying de Havilland Comets in the race: the husband and wife team of Jim and Amy Mollison (nee Johnson, already a renowned aviator) in Black Magic; Ken Waller and Owen Cathcart-Jones in an unnamed machine; and Charles (C.W.A) Scott and Tom Campbell Black in Grosvenor House.

Overall, the Comet teams did extremely well. Unfortunately, the Mollisons in Black Magic had to turn back from Baghdad after a series of errors. The other two Comets made it all the way through. After leading for most of the way, Scott and Black were the overall race winners in Grosvenor House – arriving in Melbourne a fraction under 71 hours after leaving London.

Their Comet was closely followed by KLM’s Uiver, which arrived just a few hours later – after losing its way during the night, then getting bogged in mud upon landing near the town of Albury in NSW. Third was Roscoe Turner’s Boeing 247D; with Waller and Cathcart-Jones in their Comet placing fourth overall (then returning to London with a newsreel of the race finish, thus achieving a round-trip record).

After the race, the Comets were used in other record-breaking events. Five examples were ultimately produced in total, and even went into limited commercial service in France and Portugal as fast mail planes. Another was leased for evaluation by the British military, where it met with a series of mishaps.

The DH.88 Comet is widely regarded as one of aviation’s all-time classics. In recent years Grosvenor House has been restored to full flying condition, and is a star attraction at air shows.
The Albatross first flew in May 1937, and was widely acclaimed for its elegant, streamlined design. Unfortunately, it was a case of promising product, but poor timing. A total of just seven were built, and none survived the war. Today, the Albatross can be admired only in photographs.

Birth of an idea

Based on his company’s experience with the Comet and the Albatross, Geoffrey de Havilland put forward a radical proposal. In autumn 1938, he approached the Air Ministry with plans for a new type of medium-sized bomber to be made using the wooden monocoque structure. The most radical part of his thinking was that the bomber would carry no guns to defend itself. Instead, it would rely on pure speed to make its escape. Unlike a typical heavy bomber with its crew of ten or more, his new plane would have room for only two – a pilot and a navigator. And instead of requiring scarce and expensive metals for its construction, it would make use of wood, which was plentiful. Another major advantage was that most of the airframe could also be built using skilled labour from under-utilised industries such as the furniture trade.

This idea went completely against the prevailing thinking amongst bureaucrats of the day – many of whom had flown in World War I, and who thought an unarmed front line warplane would be a sitting duck. The idea was rejected outright.

On the journey home from being rejected at Whitehall, Geoffrey de Havilland remarked to one of his companions that they would go ahead and ‘do it anyway’. He knew that at least one official saw merit in the idea: Air Marshal Sir Wilfrid Freeman (b.1888, d.1953) had served during WWI in a de Havilland DH 4 biplane – a fast bomber that had been very successful in its time. He knew the company took a creative approach to problem-solving, with ideas that were generally sound.

The world’s fastest aircraft

Away from its bustling main factory, de Havilland set up a top secret design workshop at Salisbury Hall, an old rural manor house, where it built the first prototype of the plane that would become famous as the D.H.98 Mosquito. A sleek twin-engined monoplane based around a stressed monocoque wooden structure, it was in some respects a scaled up version of the Comet racer. Aerodynamically it was state-of-the-art, with carefully designed wing profiles and a tapered fuselage resembling that of the Albatross.

In contrast to the delicate, somewhat ‘feminine’ proportions of the Comet and the Albatross, the new design had a bolder, ‘masculine’ appearance. Being much wider than the Comet, there was room for the two crew members to sit side-by-side, albeit slightly offset.

The Mosquito’s first demonstration flight was in November 1940, with de Havilland’s son, Geoffrey Jr. (b.1910, d.1946), at the controls. The plane’s performance exceeded the designers’ expectations, with a top speed during trials of 392 mph (631 km/h) at 22,000 ft, making it the world’s fastest operational aircraft by a considerable margin. It was at least 20 mph faster than the much smaller Supermarine Spitfire – itself faster than any other aircraft up until that time.

Merlin power

With de Havilland’s own Gipsy Twelve being underpowered and not entirely reliable – several alternatives were considered. The Rolls-Royce Merlin was chosen; a V12 of around 27 litres’ displacement, derived from prewar Schneider Cup racing engines. Years of trial and error had led to a design that could run at maximum output for hours on end, with generally good reliability. Named not after a magician, but a bird of prey – the Merlin powered a number of aircraft ranging from agile fighters to multi-engine heavy bombers. Over the years, it was made in many variants. Supercharging offered improved performance in the thinner air encountered at high altitudes, and a special ‘Pep Pill’ version used nitrous oxide injection for short bursts of additional speed. Being liquid cooled, the Merlin required radiators, and these were mounted on the leading edge of the Mosquito’s wings, between the engines and the fuselage.

After the Mosquito’s first demonstration flights, and an initial small production run, it soon began to prove itself in action. However, many in the upper levels of military bureaucracy had continued reservations about the plane, and it came close to being cancelled after early teething problems. Fortunately, because very little metal was being used, it was seen as ‘low risk’ to let production continue. New variants were developed which demonstrated the design’s versatility.

Along with the initial unarmed bomber and reconnaissance versions, a long range fighter was introduced. Instead of a transparent Plexiglass nose, it had a solid nose, fitted with four .303 machine guns and four 20mm cannons. This potent combination made the plane an excellent long range escort for large, slow heavy bombers; and it also did important duties as a ‘pathfinder’: dropping flares to mark targets. A dual-purpose fighter bomber variant was developed, with a smaller bomb bay, and retaining the nose mounted guns.

A small number of Mosquitoes were fitted with a very large self-loading 57mm field gun, which could fire rapid bursts of 8lb shells with devastating impact on ships and U-boats. These modified planes were nicknamed ‘Tsetse’ Mosquitoes, and the wooden frame coped easily with the gun’s 18-inch recoil. Other Mosquito variants carried rocket projectiles or torpedoes.

Growing confidence in its capabilities

As strategists and crew began to test the plane’s capabilities,
One or two people could even squeeze into a Mosquito’s bomb bay, rugged up and wearing ‘Mae West’ life preservers. It was a cold and dark journey, although a reading light and Thermos of hot coffee or cocoa was sometimes supplied.

Many of these missions were top secret – but those known to have travelled inside a Mosquito’s belly include the renowned Danish physicist Niels Bohr, and the composer Sir Malcolm Sargent. In action, the plane gained a reputation for taking punishment, while getting its crew safely home. It also became renowned for its single engine performance. When one of its Merlins was damaged by a bullet or suffered a fault, the Mosquito could still outrun many other aircraft powered by just one engine.

It was very impressed with the British engineering, and would rely upon advanced timber lamination techniques and industrial bonding methods. During Geoffrey Jr.’s tour, company founder Howard Hughes (b.1905, d.1976) arranged to meet with him and was very impressed with the British plane. The Hughes design team spent several hours examining the Mosquito’s structure before taking away valuable tips for their wooden flying boat.

However, only one example of their Hughes H-4 Hercules was eventually built – and is now popularly remembered as the ‘Spruce Goose’.

Sources and references

A huge cottage industry grew around Mosquito production, with some small parts being built literally on kitchen tables. For large structural components, Britain’s dormant furniture industry came back to life. Even church pew carvers were suddenly in demand. Renowned companies such as Parker Knoll proudly displayed only a modest role. Their range and speed made them very useful on photographic reconnaissance and combat missions. The last RAAF operational combat mission was in December 1955, when a Mosquito conducted reconnaissance above suspected communist strongholds hidden in the jungles of Malaya.

The Hughes H-4 Hercules, or Spruce Goose, was built in 1946–1947, but only one example was built. It is now on display at the Museum of Flight in Seattle, Washington.

A less widely-publicised role was as a fast courier and transport plane. Relying on pure speed, the Mosquito could fly across enemy territory in broad daylight with little fear of interception. Its bomb bay was quite capacious, and important items could be transported - all the ingredients for a reading light and Thermos of hot coffee or cocoa was sometimes supplied.

One or two people could even squeeze into a Mosquito’s bomb bay, rugged up and wearing ‘Mae West’ life preservers. It was a cold and dark journey, although a reading light and Thermos of hot coffee or cocoa was sometimes supplied.

Many of these missions were top secret – but those known to have travelled inside a Mosquito’s belly include the renowned Danish physicist Niels Bohr, and the composer Sir Malcolm Sargent. In action, the plane gained a reputation for taking punishment, while getting its crew safely home. It also became renowned for its single engine performance. When one of its Merlins was damaged by a bullet or suffered a fault, the Mosquito could still outrun many other aircraft powered by just one engine.

It was very impressed with the British engineering, and would rely upon advanced timber lamination techniques and industrial bonding methods. During Geoffrey Jr.’s tour, company founder Howard Hughes (b.1905, d.1976) arranged to meet with him and was very impressed with the British plane. The Hughes design team spent several hours examining the Mosquito’s structure before taking away valuable tips for their wooden flying boat.

However, only one example of their Hughes H-4 Hercules was eventually built – and is now popularly remembered as the ‘Spruce Goose’.

Built in Bankstown
For a number of years, de Havilland’s factory in Bankstown NSW had been producing Tiger Moths and Dragons. In 1942, it started gearing up to build a fighter-bomber and reconnaissance version of the advanced new aircraft, powered by the US-built Packard version of the Merlin.

The local furniture industry was an essential part of production, with one notable name being Fred Ward – who acted as a consultant for adapting the complex timber airframe to local conditions. (In later years, after the war, designer Roger McLay would create his ultra-modern ‘Kone’ chair using surplus coachwood ply from Mosquito production.)

After some initial problems – including finding suitable types of local timber, the first Australian-built Mosquito was delivered in July 1943, with acceptance by the RAAF in March 1944. RAAF Mosquitoes entered service fairly late in the Pacific War, and so played only a modest role. Their range and speed made them very useful on photographic reconnaissance and combat missions. The last RAAF operational combat mission was in December 1955, when a Mosquito conducted reconnaissance above suspected communist strongholds hidden in the jungles of Malaya.

Post-war service
After the war, the plane did some civilian duties, and some private companies bought surplus aircraft for use in mapping and photographic surveying. Australian-built Mosquitoes equipped with cameras conducted large scale surveys across India, Cambodia, and Australia. Many surplus Mosquitoes were acquired by other countries for use as combat aircraft in other conflicts.

For example, Israel used them in the Six Day War campaign before retiring the type in the late 1950s. For the de Havilland Company, it had been a long journey from the sleek Comet that won ‘Mac’ Robertson’s great air race, and the largely forgotten Albatross airliner. And although those two designs were built in very small numbers, valuable lessons were learned.

A total of 7,781 Mosquitoes were built, including 1,133 in Canada and 212 in Australia. Today, only two are in flying condition. Both are privately owned, and have been rebuilt virtually from scratch using new timber. About 30 others are on static display in museums around the world, including one at the Australian War Memorial in Canberra.

With its outstanding track record in so many roles, the de Havilland Mosquito is undoubtedly one of the most versatile aircraft ever built.
Two new books of vastly different scope have come to hand. Both make very rewarding reading.

The architecture of nineteenth century Sydney (and indeed a fair amount up to 1940), is generally associated with the warm, high-toned qualities of sandstone. However, there was another building stone that became popular during the 1890s that is just as important in defining Sydney’s visual character. This is the beautiful, durable and versatile trachyte, the story of which is explored in great depth in Sydney’s Hard Rock Story: the cultural heritage of trachyte. The book was written by Robert Irving OAM, architectural historian, former senior lecturer in architecture at UNSW, and a long-standing member of the Twentieth Century Heritage Society of NSW; Ron Powell, architect, landscape architect and stone consultant; and Noel Irving, research assistant and picture researcher. Both Robert and Noel Irving collaborated on Twentieth Century Architecture in Wollongong (2001) and Donald Thomas Esplin, Sydney Architect: his life and work (2008).

Sydney’s Hard Rock Story is about the trachyte quarried in Bowral, and introduces the topic with a “trachyte walk” through Central Sydney. Here are buildings from the 1890s and 1900s, the interwar period and even latecomers from the 1960s. The rest is devoted to an analysis of what trachyte actually is, a history of the Mount Gibraltar quarries from establishment, closure and present-day recreational uses, and the men behind the stone. It also explores the buildings and monuments in Sydney and elsewhere that are the end result of their endeavours.

Trachyte’s many notable qualities recommended it for a spectrum of uses, from prosaic kerbstones and paving cubes to prestigious corporate headquarters and civic monuments. Its great qualities of hardness and long-term durability were exploited to the full - many kerbstones are still in place more than 100 years after installation - along with the marvellous contrasts of surface texture and colour resulting from treatments such as carving, polishing and the rough textured finish of axe-facing. The stone’s golden age extended from the lean 1890s to the boom and bust of the 1920s, although architects were still specifying it right up to the second half of the 1960s. What the book also reveals is the unexpected use in architecture and monumental structures during the last quarter of the twentieth century and beyond. There is still a need for this beautiful stone, most particularly for the conservation of significant buildings. As the quarries closed in 1986, this presents a major problem. The authors discuss these and offer possible solutions.

The book has been thoroughly researched and is supported by a wealth of photographs, a useful glossary and a bibliography. Its merits were acknowledged when it won the National Trust’s Award in the category of Research and Investigation/Analysis - community/individual category for 2014. At the same time Robert Irving received the Trust’s Lifetime Achievement Award. Sydney’s Hard Rock Story can be ordered via www.sydneyshardrockstory.com/site/shr and is available in bookstores.

Although the first interpretations of European-inspired Modernism appeared in Australia from the mid 1930s, Modernism did not really begin to take hold here until after World War II. Its impact was immense, affecting all aspects of life, from the average family home and its contents to the corporate realm, transport and tourism. Modernism’s local achievements, from the fine arts and high fashion to popular design and lifestyle, are enthusiastically explored in Australian Modern Design: mid 20th century architecture & design. The book was edited and published by respected Brisbane photographer and Modernist enthusiast Chris Osborne. It started in 2007 with the publication of the first issue of Brisbane Modern Magazine, which met with a warm reception and led to two successive issues. Chris gave a presentation on Australian Modernist architecture at the 2011 Design Week staged in Palm Springs, California, which led to the publication of Australian Modern. It was so favourably received nationally that it inspired the production of Australian Modern Design.

The book contains a collection of 34 concise essays supported by numerous descriptive photographs celebrating the wide scope and diversity of Australian Modernism from the second half of the 1940s through to the 1970s, which accompanied the era of remarkably consistent prosperity known as the Long Boom. The authors come from a wide range of backgrounds and expertise: many have architectural backgrounds, including some with heritage experience; some are academics, some are knowledgeable and enthusiastic owners of houses; and some are collectors. There are contributions from several historians plus a sprinkling of artists, designers, writers, a composer and a musician. They provide a wealth of information and observations, plus insights into individuals who made their mark on this era.

A fair number of the essays are devoted to architecture and architects, but they cover a diverse range of building types, contexts and locations across eastern Australia, South Australia and Western Australia. Others are devoted to painting, sculpture and music, caravans and cars, high fashion and significant people associated with it, and designers who made important contributions to local Modernism.

To sum up, this book is a very welcome addition to the small body of Australia’s literature on Modernist design within Australia. It has a limited edition of 1000 copies and can be ordered via www.australianmodern.com.au
On our recent trip through Spain we were fortunate enough to join a mid-day guided tour and attend an evening concert in the Palau de la Musica Catalana, as it’s officially called, in Barcelona.

It was commissioned by the Orfeo Catala amateur choral society as its home. Funds for the project were provided by popular subscription among the choir’s members and its wealthy patrons with the aim of fostering the rich singing tradition of the Catalan province. The chosen architect, Lluis Domenech i Montaner (1850-1923), was by then an established practitioner and a vocal proponent of the so called ‘Modernisme Catalana’ – a local exuberant blend of Art Nouveau and Jugendstil with infusion of Hispano-Arabic architectural details.

Yet another manifestation of the Catalan Rebirth movement in arts and literature at the end of the 19th century, this most politically motivated, separatist aesthetic style gained popularity with several prominent architects of the period, not least with the more widely known Antoni y Comet y Gaudi. This Barcelona version of modernism is characterised by the predominance of curved lines in its dynamic designs and abundance of organic ornamentation. A professor at the Architectural School of Barcelona for more than 20 years, Domenech i Montaner assembled sculptors, ceramists, glassmakers, mosaic artisans and other craftsmen for the Palau’s project. Using mainly locally available materials according to the clients’ wishes, the architect and his team created a masterpiece which in itself was a majestic symphony of applied arts.

A brick and steel-framed structure, the building was completed in a relatively short time from 1905 to 1908. The speed of construction was due to the innovative process of manufacturing individual structural and decorative components in craftsman studios and assembling them together on site. Designed for just over 2,100 seats, the Palau’s auditorium featured such pioneering detail as an early version of a curtain wall, with columns bearing the load of the top storey of the building. Another unusual device in the construction was the use of ‘curtain’ walls, which allowed for the flexible arrangement of the seating area.
employed by the architect to visually and physically lighten up the structure was the design of the main staircases. Their transparent banisters consisted of metal rods encased within hollow, amber-coloured glass tubes. In spite of the building’s location in a narrow street, expansive window panes let natural light deep into the concert hall.

An additional source of natural light is a stained glass skylight over the auditorium by Antoni Rigalt. It, aptly, depicts a performance of the Orfeo Catala singers gathered around a sun-like golden semi-sphere. The abundance of natural light allows matinee concerts to be held without additional illumination, which makes the Palau unique among the concert halls of Europe. Daylight filtering through richly coloured, exquisitely decorated, stained glass windows by Rigalt and Granell adds to the overall magical effect of performances. Another spectacular feature of the concert hall is the curved stage backdrop adorned with images of 18 ‘muses’ playing different musical instruments. Their upper bodies were sculpted by Eusebi Arnau and their colourfully-costumed lower bodies were executed in mosaic by Lluis...
DYMOND, FOULDS & VAUGHAN

Suite 5, 1st Floor, 200 Victoria Road, Drummoyne NSW 2047
Telephone: 02 9181 4747 Fax: 02 9819 7823
Email: john@dfv.net.au Web: www.dfv.net.au

Dymond, Foulds & Vaughan provides strategic alliances with the legal firm of Perkins Fahey and the financial advisory firm of Newell Palmer to provide its clients with an integrated suite of professional services that would normally only be available from major international accounting firms catering for multinational corporate clients. Dymond, Foulds & Vaughan offers this facility whilst providing the personal attention of the firms’ senior people that is available from small firms, and at a small firm price!

The Twentieth Century Heritage Society of NSW, Inc.

P.O. Box Q1072, QVB Post Office,
Sydney NSW 1230, Australia.
Phone: + 61 2 9878 2511
Email: info@twentieth.org.au

www.twentieth.org.au

GUIDELINES FOR CONTRIBUTIONS

Any contributions should ideally be focused on people, design, art, landscapes and allied topics within, or by someone associated with New South Wales & the ACT in some way. Our Aims & Objectives are focused on trying to raise awareness, conserve and continue to enjoy those heritage and heritage sensitive items and places in our own back yard.

We do welcome contributions that are not to do with New South Wales or the ACT however they should either be papers or articles relating to what a Member, Friend or Associate has personally experienced of Twentieth Century items & places whilst in other states or overseas. Articles that compare design or aspects of conservation overseas (e.g. how preservation works in Britain compared to New South Wales) are also worthwhile, as are articles that examine impacts of overseas design or artefacts on New South Wales.

Authorship for all contributions, whether whole articles, or citations within an article, will be acknowledged. All sources and images must be credited.

Submissions may be sent to the Editor, John Dymond, at john@dfv.net.au.

You can send your text as an email attachment in any common word processor format such as .doc, .docx or .pages. Submit your images as .jpeg, .tiff, .png or .pdf.

Opinions expressed within this publication are not necessarily those of the publisher.